
Experimenting with generic programming

features

Arjen Markus
arjen.markus@deltares.nl

August 28, 2019

1 Introduction

Generic programming holds the promise of reducing the amount of code that
needs to be written and maintained: rather than copying source code and adapt-
ing it for a new data type you simply let the compiler do that tedious job.
Templates as featured in C++ are an exemple par excellence of generic pro-
gramming. From the point of view of the programmer/user they are very easy
to use1:

template <c l a s s T>
c l a s s mypair {

T va lues [2] ;
pub l i c :

mypair (T f i r s t , T second)
{

va lue s [0]= f i r s t ; va lue s [1]= second ;
}

} ;

In this code fragment the capital T is a template parameter, representing a
generic data type. To use this generic class you need to define an object with
the template parameter filled in:

mypair<int> myobject (115 , 3 6) ;

for a pair of integers or

mypair<double> myf loats (3 . 0 , 2 . 1 8) ;

for a pair of double-precision reals. And of course you can also use other, non-
intrinsic, data types.

The Standard Template Library (STL) in C++ is entirely based on such
templates.

1Copied from http://www.cplusplus.com/doc/oldtutorial/templates/

1

http://www.cplusplus.com/doc/oldtutorial/templates/

While Fortran does not have such overt generic features, there is definitely
more than meets the eye. For instance, we don’t think about it as such, but
array construction like:

x = [x , y]

works with any data type, both intrinsic and derived types, with no change to
the code except for the declaration of the variables and literal values. The same
holds holds for input or output, unless you need to control the formatting:

write (∗ ,∗) ’ Value o f x : ’ , x

Two other generic features that Fortran supports are the kind mechanism
and parametrised derived types. As remarked by Haveraaen et al. [2], many lan-
guages require a different keyword to select reals or integers of different range
and precision. Fortran allows the programmer to arrange this via a kind pa-
rameter, thus reducing the need for this type of generic programming.

A recent paper by Haveraaen et al. [1] discusses the properties that any
generic programming facility should ideally have. The experiments sketched in
this note will be compared to these properties in section 5.

2 How to program a generic task?

2.1 Traversing a collection of data

When it comes to more extensive programming tasks, such as storing data in a
flexible structure, a linked list, for instance, we need to do some work. This note
examines a few possibilities to minimize that work. To make it more concrete,
here is the problem we seek to solve:

Given a collection of data, print only those data that fulfill some user-defined
criterium. We want the code to be as independent of the structure of the
collection, the actual data and the criterium as possible.
For the collection2 we require that there is a way to iterate over all its

elements. For the sake of concreteness we consider ordinary arrays as well as
files on disk that are read item by item. It should be possible to implement
solutions for other types of collections as well, but with these two collection
types we do not need much code to implement the desired behaviour.

If we restrict ourselves to arrays, then a simple solution could be:

do i = 1 , s ize (array)
i f (. . . c ond i t i on on array (i) . . .) then

write (∗ ,∗) array (i)
endif

enddo

or using a more advanced construct (showing that associate is more than just
text substitution):

2In the STL the term is ”container” and all manner of behaviour is defined for containers
of various types. ”Collection” seems a more neutral term.

2

a s s o c i a t e (x => pack (array , . . . c ond i t i on on array . . .))
do i = 1 , s ize (x)

write (∗ ,∗) x (i)
enddo

end a s s o c i a t e

These implementations have as the main drawback that they are only appli-
cable to arrays. The type of solution we seek looks more like:

. . . d e f i n e a s u i t a b l e f i l t e r . . .

do while (c o l l e c t i o n%has next ())
write (∗ ,∗) c o l l e c t i o n%get ()

enddo

2.2 Object-oriented solution

Using the object-oriented features introduced by the Fortran 2003 standard we
can easily define derived types with associated methods. The collection should
allow for some method to populate it – for arrays that will be quite different
than for files, so leave that to the design of the specific collection – but both
types should be able to store some kind of ”filter” and should have a method
has_next() and a method get(). This translates into a definition along these
lines:

type c o l l e c t i o n
type (data type) : : item
log ica l : : i n i t i a l i s e d = . fa l se .
log ica l : : h a s f i l t e r = . fa l se .
log ica l : : next i tem = . fa l se .
. . . components f o r f i l t e r i n g . . .

contains
! l e a v e the c r e a t e method to the implementat ion o f
! s p e c i f i c c o l l e c t i o n s
! procedure : : c r e a t e => c r e a t e g e n e r i c
!
procedure : : has next => h a s n e x t g e n e r i c
procedure : : get => g e t g e n e r i c
procedure : : s e t f i l t e r => s e t f i l t e r g e n e r i c

end type g e n e r i c c o l l e c t i o n

This ”skeleton” class anticipates that some generic data are required for the
state of the collection – does it have data to work with? has a filter been set?
etc.

For the filter we can use a separate derived type (class/object) or we can
use a procedure pointer. There are good reasons to use a derived type, as you
can store all manner of data in it for the parametrisation of the filter. However,

3

if you need a different filter in the program you would need to define a new
type with an associated method to do the actual check that the item under
examination is acceptable or not.

Therefore we use a procedure pointer instead: the procedure pointer can
point to an internal routine and so use any data from the calling program unit.
This is illustrated by the code fragment below:

program d e m o f i l t e r
. . .
!
! Set up the c o l l e c t i o n and the f i l t e r
!
ca l l f i l e%c r e a t e (’ somedata . csv ’ , s k i p l i n e s = 1)

pattern = ”NW1”
ca l l f i l e%s e t f i l t e r (c o n t a i n s p a t t e r n)

!
! Traverse the c o l l e c t i o n
!
do while (f i l e%has next ())

write (∗ ,∗) f i l e%get ()
enddo

contains

! c o n t a i n s p a t t e r n −−
! Check i f the s t r i n g co nta ins the p a t t e r n
!
log ica l function c o n t a i n s p a t t e r n (s t r i n g)

type (data type) , intent (in) : : s t r i n g

c o n t a i n s p a t t e r n = (index (s t r i n g%value , trim (pattern)) > 0)
end function c o n t a i n s p a t t e r n

This program simply reads lines from a CSV file – without any interpretation
– and prints those lines that contain the string ”NW1”. With a filter object
that would require creating a class that holds the string and has a method with
the above signature.

2.3 Making the code generic

During the preparation of this note various designs passed by, but I realised
that the get() and has_next() methods are not enough if we want to make
things ”completely” generic:

• The method has_next() will examine the items in the file or the array
one by one and return when an acceptable item is found. To make this

4

work for files and for arrays, we need a new method that is specific to the
type of collection we are dealing with, but the logic of passing each item
through a filter is generic:

! Implementation o f the h a s n e x t () method

log ica l function h a s n e x t g e n e r i c (t h i s)
c l a s s (c o l l e c t i o n) , intent (inout) : : t h i s

type (data type) : : item
log ica l : : s u c c e s s

h a s n e x t g e n e r i c = . fa l se .
do

ca l l t h i s%get next (item , s u c c e s s)

i f (. not . s u c c e s s) then
t h i s%next i tem = . fa l se .
exit

endif
i f (t h i s%acceptab l e (item)) then

h a s n e x t g e n e r i c = . true .
t h i s%next i tem = . true .
t h i s%item = item
exit

endif
enddo

end function h a s n e x t g e n e r i c

This routine is independent of the type of collection! It gets the next item
using a specific method, get_next and stores the item once an acceptable
one is encountered.

• The method get() needs to do nothing more than return the stored item.
The condition of the loop ensures us that this method is only invoked
when there is indeed such an item.

The method may be a function or a subroutine. A function is perhaps
more direct (and that is the way it is shown above) but a subroutine is
more natural if we want to return extra information, like: did we indeed
succeed?3

The next issue to solve is that of the type of the data item that we store
in the collection for retrieval. In the above code fragments we use the generic
name type(data_type). We cannot use a specific name or assume it is one
of the intrinsic types: that would defeat the purpose of generic programming.

3There is no means to ensure at compile time that the routine get() is used in conjunction
with has next(). This might be a reason to check for run-time errors in get().

5

We would need a copy of the source code for each type and kind we want to
support. A straightforward solution is to use the renaming facility of the use

statement and the include directive:

module c o l l e c t i o n s
use bas i c type s , data type => s t r i n g t y p e

implicit none

include ’ c o l l e c t i o n g e n e r i c . f90 ’

type , extends (c o l l e c t i o n) : : c o l l e c t i o n f i l e
integer : : lun

contains
procedure : : c r e a t e => c r e a t e f i l e
procedure : : g e t nex t => g e t n e x t f i l e

end type c o l l e c t i o n f i l e

contains

include ’ c o l l e c t i o n i m p l e m e n t a t i o n . f90 ’

subroutine c r e a t e f i l e (th i s , f i l ename , s k i p l i n e s)
c l a s s (c o l l e c t i o n f i l e) , intent (inout) : : t h i s

. . .
end subroutine c r e a t e f i l e

subroutine g e t n e x t f i l e (th i s , item , r e t r i e v e d)
c l a s s (c o l l e c t i o n f i l e) , intent (inout) : : t h i s
type (data type) , intent (inout) : : item
logical , intent (out) : : r e t r i e v e d

character (len=100) : : l i n e ! A r b i t r a r y l e n g t h
integer : : i e r r

read (t h i s%lun , ’ (a) ’ , iostat = i e r r) l i n e

i f (i e r r == 0) then
r e t r i e v e d = . true .
item = trim (l i n e)

else
r e t r i e v e d = . fa l se .

endif

end subroutine g e t n e x t f i l e

6

end module c o l l e c t i o n s

Here the type string_type is imported from a module providing vari-
ous derived types and renamed to data_type so that the code in the module
collections can be properly compiled. The two include files contain the decla-
ration of the collection class and the implementation of the completely generic
routines.

Via type extension we then create a new class, collection_file that reads
lines from a file. The routine get_next_file() takes care of reading just one
line and registering if this was successful or not.

In the actual implementation the type string_type is defined as:

type s t r i n g t y p e
character (len=:) , allocatable : : va lue

end type s t r i n g t y p e

to store character strings of arbitrary length. Unfortunately it is not possible
to directly read a line from a file using an unallocated character string. Instead
we use a string of fixed length and assign it to the component value.

A nice way to achieve this is to use a defined assignment (which is fairly
trivial in this case):

interface assignment(=)
module procedure a s s i g n s t r i n g

end interface

. . .
contains

subroutine a s s i g n s t r i n g (s t r i ng , char)
type (s t r i n g t y p e) , intent (inout) : : s t r i n g
character (len=∗) , intent (in) : : char

s t r i n g%value = char
end subroutine a s s i g n s t r i n g

This mechanism can be usefully exploited by considering a data type that
interprets the fields of the CSV file:

type s t a t i o n d a t a t y p e
character (len=20) : : s t a t i o n
character (len=10) : : date
real : : s a l i n i t y
real : : temperature

end type s t a t i o n d a t a t y p e

interface assignment(=)
module procedure a s s i g n s t a t i o n d a t a

7

end interface

. . .

contains

subroutine a s s i g n s t a t i o n d a t a (s ta t i on data , char)
type (s t a t i o n d a t a t y p e) , intent (inout) : : s t a t i o n d a t a
character (len=∗) , intent (in) : : char

read (char , ∗) s t a t i o n d a t a%sta t i on , s t a t i o n d a t a%date , &
s t a t i o n d a t a%s a l i n i t y , s t a t i o n d a t a%temperature

end subroutine a s s i g n s t a t i o n d a t a

The source code for the method get_next can remain exactly the same – via
the renaming of the type station_data_type to data_type and the operator
overloading that the compiler takes care of!

3 Limitation: intrinsic types

The methodology described here has one important drawback, namely the re-
naming feature is not applicable to intrinsic types. There is no way to rename,
say, a plain integer to data_type, as we did with the derived types.

A workaround is to encapsulate intrinsic types into a derived type and pro-
vide defined assignments for these derived types to make it easier to work with:

type r e a l t y p e
real : : va lue

end type r e a l t y p e

interface assignment(=)
module procedure a s s i g n s p r e a l

end interface

. . .

contains

elemental subroutine a s s i g n s p r e a l (value , spva lue)
type (r e a l t y p e) , intent (inout) : : va lue
real , intent (in) : : spva lue

value%value = spvalue
end subroutine a s s i g n s p r e a l

This is used among others in the main program for the array-based collec-
tions:

8

type (data type) , dimension (100) : : a r ray data
. . .
real (r e a l k i n d) , dimension (100) : : random value

!
! Set up the c o l l e c t i o n
!
ca l l random number(random value)

ar ray data = random value ! Assign the v a l u e s

ca l l array%c r e a t e (ar ray data)

4 Putting it all together

The various pieces can now be used to define dedicated collection types. For
the two file-based collections, the only difference (except for the module that
contains them) is the renaming of the actual underlying data type:

module m c o l l e c t i o n f i l e
use bas i c type s , only : data type => s t r i n g t y p e , &

assignment(=)
private
public : : c o l l e c t i o n f i l e , data type

include ’ c o l l e c t i o n f i l e b o d y . f90 ’

end module m c o l l e c t i o n f i l e

module m c o l l e c t i o n s t a t i o n d a t a
use bas i c type s , only : data type => s t a t i on da ta type , &

assignment(=)
private
public : : c o l l e c t i o n f i l e , data type

include ’ c o l l e c t i o n f i l e b o d y . f90 ’

end module m c o l l e c t i o n s t a t i o n d a t a

This same holds for the array-based collections – to make the using code
independent of the chosen precision (single or double), we simply define the
appropriate kind parameter:

module m c o l l e c t i o n r e a l a r r a y
use bas i c type s , only : data type => r ea l t ype , &

assignment(=)

9

private
public : : c o l l e c t i o n a r r a y , data type , r ea l k ind , &

assignment(=)
! S i n g l e p r e c i s i o n

integer , parameter : : r e a l k i n d = kind (1 . 0)

include ’ c o l l e c t i o n a r r a y b o d y . f90 ’
end module m c o l l e c t i o n r e a l a r r a y

module m c o l l e c t i o n d o u b l e a r r a y
use bas i c type s , only : data type => double type , &

assignment(=)
private
public : : c o l l e c t i o n a r r a y , data type , r ea l k ind , &

assignment(=)
! Double p r e c i s i o n

integer , parameter : : r e a l k i n d = kind (1 . 0 d0)

include ’ c o l l e c t i o n a r r a y b o d y . f90 ’
end module m c o l l e c t i o n d o u b l e a r r a y

The include file ”collection file body.f90” looks like this, using in turn two
other include files:

include ’ c o l l e c t i o n g e n e r i c . f90 ’

type , extends (c o l l e c t i o n) : : c o l l e c t i o n f i l e
integer : : lun

contains
procedure : : c r e a t e => c r e a t e f i l e
procedure : : g e t nex t => g e t n e x t f i l e

end type c o l l e c t i o n f i l e

contains

include ’ c o l l e c t i o n i m p l e m e n t a t i o n . f90 ’

subroutine c r e a t e f i l e (th i s , f i l ename , s k i p l i n e s)
c l a s s (c o l l e c t i o n f i l e) , intent (inout) : : t h i s
character (len=∗) , intent (in) : : f i l ename
integer , intent (in) , optional : : s k i p l i n e s

integer : : i

open(newunit = t h i s%lun , f i l e = f i l ename)

i f (present (s k i p l i n e s)) then

10

do i = 1 , s k i p l i n e s
read (t h i s%lun , ∗)

enddo
endif

t h i s%i n i t i a l i s e d = . true .
end subroutine c r e a t e f i l e

subroutine g e t n e x t f i l e (th i s , item , r e t r i e v e d)
c l a s s (c o l l e c t i o n f i l e) , intent (inout) : : t h i s
type (data type) , intent (inout) : : item
logical , intent (out) : : r e t r i e v e d

character (len=100) : : l i n e
integer : : i e r r

read (t h i s%lun , ’ (a) ’ , iostat = i e r r) l i n e

i f (i e r r == 0) then
r e t r i e v e d = . true .
item = trim (l i n e)

else
r e t r i e v e d = . fa l se .

endif
end subroutine g e t n e x t f i l e

It defines:

• The abstract collection class via the two include files, ”collection generic.f90”
and ”collection implementation.f90”. That way the data_type derived
type can ultimately be renamed.

• The generic class for file-based collections and the methods that belong
to that. Note that the data type that is used to convey the data to the
caller is type(data_type) and nothing else.

By putting the code for a particular collection type in a separate module,
we achieve two things:

• Reuse of the renaming clauses – they only need to be put in the defining
module and user code merely needs to use the module.

• If a program requires two or more collection types, then the renaming
feature can be used to rename the collection types to avoid name clashes.
This is also the reason for the private and public statements – only
specific names are passed on.

The two main programs are shown side by side at the end of this note. As
can be seen, the code is almost identical.

11

5 Comparison to C++ and the paper ”Reflect-
ing on generics”

The eperiment described here relies on three features of Fortran:

• the include directive to avoid duplication of the source code;

• the renaming facility of the use statement, so that the same source code
can be used for different data types;

• the overloading of assignment for specific data types, which enables the
use of ”type-agnostic” assignments.

The main limitation is seen with intrinsic types – they cannot be renamed
and therefore an intermediate derived type is required. Other solutions such
as unlimited polymorphic variables, are likely possible, but they have not been
explored here.

In comparison to the template mechanism of C++ the construction of generic
source code is slightly more complicated from the point of view of the user:
you create a separate module for each specific collection type, although this
comprises of no more than four or five lines of code. This needs to be done
once and is independent from the using code. Therefore, there is always only
one copy of the actual object code. In C++ this requires dedicated support
from the compiler and linker, as discussed by Stone [3] and each instance of
a templated class or function requires compilation of the same source code.
(Another problem, noted by Haveraaen et al. [1], is that mistakes in the generic
code may lead to convoluted and incomprehensible error messages. The Fortran
construction presented here does not cause any more obscure error messages
than usual Fortran code.)

The requirements that Haveraaen et al. [1] present regarding a generally
useable generics mechanism are certainly not all met, though some have not
been investigated here:

• Type safety is guaranteed within the bounds of Fortran, as the source code
is actually straightforward Fortran.

• Intrinsic types are not treated in the same way as derived (user-defined)
types, the major shortcoming.

• By using the modules that define specific collection types, it should be
possible to extend the features, though this has not been demonstrated
here. Modules like m_collection_file allow us to reuse the instantation
parameters and therefore long lists of types and kinds are not an issue.

• Renaming for instantiation and generic source code is at the heart of the
generics mechanism presented here.

For setting up a repository of generic code an important step is not only the
availability of a generics mechanism, but also an adequate distinction between

12

the generic and specific parts. Current-day Fortran, which does not exhibit its
generic features, provides at least some of the necessary building blocks.

Source code

The full source code is available at https://sourceforge.net/p/flibs/svncode/
HEAD/tree/trunk/experiments/generics/

References

[1] Magne Haveraaen, Järvi Jaakko, and Damian Rouson. Reflecting on generics
for Fortran, 2019.

[2] Magne Haveraaen, Karla Morris, Damian Rouson, Hari Radhakrishnan, and
Clayton Carson. High-performance design patterns for modern fortran. Sci-
entific Programming, 2015:1–14, 2015.

[3] Adrian Stone. Minimize code bloat: Template overspecialization, 2009.

13

https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/generics/
https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/generics/

program d e m o f i l t e r
use m c o l l e c t i o n f i l e
implicit none
type (c o l l e c t i o n f i l e) : : f i l e

type (data type) : : item

character (len=20) : : pattern
log ica l : : r e t r i e v e d

! Connect the f i l e to the c o l l e c t i o n
ca l l f i l e%c r e a t e (’ somedata . csv ’ , s k i p l i n e s = 1)

! Set up the f i l t e r
pattern = ”NW1”
ca l l f i l e%s e t f i l t e r (c o n t a i n s p a t t e r n)

! Traverse the c o l l e c t i o n
do while (f i l e%has next ())

ca l l f i l e%get (item , r e t r i e v e d)
write (∗ ,∗) item%value

enddo

contains

logica l function c o n t a i n s p a t t e r n (s t r i n g)
type (data type) , intent (in) : : s t r i n g

c o n t a i n s p a t t e r n = &
(index (s t r i n g%value , trim (pattern)) > 0)

end function c o n t a i n s p a t t e r n
end program d e m o f i l t e r

program d e m o f i l t e r
use m c o l l e c t i o n r e a l a r r a y
implicit none
type (c o l l e c t i o n a r r a y) : : array
type (data type) , dimension (100) : : a r ray data

type (data type) : : item

real (r e a l k i n d) , dimension (100) : : random value
real (r e a l k i n d) : : minimum
log ica l : : r e t r i e v e d

! F i l l the c o l l e c t i o n with data (de f ined assignment)
ca l l random number(random value)
ar ray data = random value
ca l l array%c r e a t e (ar ray data)

! Set up the f i l t e r
minimum = 0.6 r e a l k i n d
ca l l array%s e t f i l t e r (i s g r e a t e r)

! Traverse the c o l l e c t i o n
do while (array%has next ())

ca l l array%get (item , r e t r i e v e d)
write (∗ ,∗) item%value

enddo

contains

logica l function i s g r e a t e r (va lue)
type (data type) , intent (in) : : va lue

i s g r e a t e r = value%value > minimum

end function i s g r e a t e r
end program d e m o f i l t e r

14

	Introduction
	How to program a generic task?
	Traversing a collection of data
	Object-oriented solution
	Making the code generic

	Limitation: intrinsic types
	Putting it all together
	Comparison to C++ and the reflections on generics

