
Prototypes and properties

Arjen Markus
arjen.markus@deltares.nl

May 30, 2019

1 Introduction

It may not be obvious at a first glance, but object-oriented programming comes
in a wide variety of flavours. While dominated perhaps by the C++ and Java
flavours – which differ in subtle ways – there are also such methodologies as
advocated by the Self language.1 Instead of classes that have a fixed set of
components and methods and that have to be extended by defining subclasses,
the Self language uses so-called protoypes: an object inherits the components
and methods from any object you like and you can expand that set per object.
This makes the objects in question very flexible.

I was inspired for the code described in this note by both the Self language
and by a blog by Steve Yegge2. The implementation has a large number of
limitations, as it is merely a proof of concept, but what it does is quite in the
spirit of this prototypes pattern. What it does in short:

• The prototype derived type allows you to define properties that can be
retrieved by name.

• The properties can have any type you need. If new (derived) types need
to be supported, you define two additional subroutines and link them to
the existing set via an interface statement. There is no need to define an
extended derived type (a subclass).

• The list of properties stored in a prototype variable can simply be copied
to another variable of this derived type.

• One limitation with respect to the prototypes pattern as described by
Yegge is that properties are not inherited from a parent, but are simply
copied. The reason for this limitation is that you would have to be very
careful about keeping parent objects alive, as otherwise you can easily
create ”dangling pointers”.

1See for instance https://en.wikipedia.org/wiki/Self_(programming_language).
2See https://steve-yegge.blogspot.com/2008/10/universal-design-pattern.html.

1

https://en.wikipedia.org/wiki/Self_(programming_language)
https://steve-yegge.blogspot.com/2008/10/universal-design-pattern.html

2 The interface and implementation

The module prototypes defines all the functionality that is needed to store and
retrieve properties:

• The relevant derived type is prototype. It is not defined as a ”class” in
the Fortran sense, that is, it has no type-bound procedures. The reason
for that is explained in section 3.

• There are two public routines: prototype_set and prototype_get. These
form the entire set of explicitly defined methods for the derived type. (For
debugging purposes there is also a routine prototype_print that prints
the list of properties.)

• Due to the way the derived type has been defined, namely with allocatable
components, to copy the list of properties, you can use default assignment:

use prototypes

type(prototype) :: p1, p2

integer :: start, end

logical :: found

!

! Fill properties for variable p1

!

call prototype_set(p1, "Start", 1)

call prototype_set(p1, "End", 10)

call prototype_set(p1, "Stepsize", 3)

!

! We need a copy, reset one property:

!

p2 = p1 ! This relies on automatic reallocation!

call property_set(p2, "Start", 2)

call property_get(p2, "Start", start, found)

call property_get(p2, "End", end, found)

write(*,*) "Start and end for object p2: ", start, end

call property_get(p1, "Start", start, found)

call property_get(p1, "End", end, found)

write(*,*) "Start and end for object p1: ", start, end

The prototype derived type holds an array of type property_type:

2

type property_type

character(len=:), allocatable :: name

class(*), allocatable :: value

end type property_type

The essential aspect of this derived type is the use of an unlimited poly-
morphic component, value. Together with a few other advanced features, this
makes it possible to implement the specific versions of prototype_set in the
following fashion:

subroutine prototype_set_int(p, name, value)

type(prototype), intent(inout) :: p

character(len=*), intent(in) :: name

integer, intent(in) :: value

integer :: indx

call find_index(p, name, indx)

if (allocated(p%list(indx)%value)) then

deallocate(p%list(indx)%value)

endif

allocate(p%list(indx)%value, source = value)

end subroutine prototype_set_int

(The implementation of the private routine find_index is not important
– it may simply search the list of names and insert a new name if it has not
already been defined or it may use a hash table to speed up searches.)

All that needs to be changed for other types of data to be stored is the
declaration of the value argument.

As only the allocatable attribute is used for variables and components
that have a dynamic size, memory management is particularly simple: we can
rely on the rules defined for such variables.

The last important feature to be noted is the use of ”sourced” allocation:
this causes the polymorphic variable to take on the right (dynamic) type as well
as the right value.

The retrieval routines, prototype_get, are slightly more complicated: the
polymorphic variable has to be ”cast” to the right type and it may be that no
key by the requested name has been defined yet:

subroutine prototype_get_int(p, name, value, found)

type(prototype), intent(in) :: p

character(len=*), intent(in) :: name

integer, intent(out) :: value

logical, intent(out) :: found

integer :: indx

3

call find_existing_index(p, name, indx)

found = .false.

value = -999

if (indx > -1) then

select type(v => p%list(indx)%value)

type is (integer)

found = .true.

value = v

class default

write(*,*) ’Value for "’, name, ’" not an integer’

end select

else

write(*,*) ’Property "’, name, ’" does not exist’

endif

end subroutine prototype_get_int

(As the name suggests, the private routine find_existing_index does not
add a new entry, if no key by the requested name was found.)

How to deal with non-existing keys or keys that have an associated value
that is not compatible with the requested data type, is a vexing question, for
which there exists no universally acceptable answer, although in programming
languages like C++ and Java, you would probably use exceptions to transfer
control to a calling routine.

The various specific routines for storing and retrieving properties are bundled
into two interfaces:

interface prototype_set

module procedure prototype_set_int

module procedure prototype_set_char

...

end interface

interface prototype_get

module procedure prototype_get_int

module procedure prototype_get_char

...

end interface

3 Supporting new basic and derived types

As indicated in the introduction, it is fairly easy to extend the current prototypes
module to include new basic or derived types. All you need to do is:

• Define specific versions of the prototype_set and prototype_get rou-
tines.

4

• Extend the generic interfaces.

This can in fact be done without modifying the original module:

module prototypes_additional

use prototypes

type iterate

integer :: start = 1

integer :: end = 0

integer :: stepsize = 1

end type iterate

interface prototype_set

module procedure prototype_set_type_iterate

end interface

interface prototype_get

module procedure prototype_get_type_iterate

end interface

contains

subroutine prototype_set_type_iterate

...

end subroutine prototype_set_type_iterate

subroutine prototype_get_type_iterate

...

end subroutine prototype_get_type_iterate

end module

This is possible, because generic interfaces with the same name are merged.
If the routines were made methods of a class prototype, then generic inter-

faces are also possible, but they cannot be extended as easily: instead of via a
different module, we would need to extend the prototype class:

type prototype

type(property_type), allocatable, dimension(:) :: list

...

contains

procedure :: get_int => prototype_get_int

procedure :: get_char => prototype_get_char

...

generic :: get => get_int, get_char, ...

end type prototype

type(prototype) :: prototype_extended

contains

5

procedure :: get_iterate => prototype_get_iterate

...

generic :: get => get_iterate

end type prototype_extended

Of course, such an implementation enables the programmer to use code like:

call p%get("Start", start, found)

One might also consider using a function form instead of a subroutine for
retrieving property values. The problem with functions, however, is that the
return type is not used to identify the specific implementation in a particular
context:

integer :: start

real :: initial_value

! For simplicity: ignore the "not found" case

start = p%get("Start")

initial_value = p%get("Initial") ! Ambiguity!

A workaround would be to let the prototype_get function return some
special derived type and define specific assignments to convert from that specific
type to whatever the type of the left-hand side variable. Whether this is an
attractive alternative is partly a matter of taste.

4 Storing functions and subroutines as proper-
ties

The presentation sofar has focussed on storing data, both basic data like integers
and strings and derived types. But the method can be extended to store and
retrieve pointers to functions and subroutines as well. Just as for data, you can
define a derived type to hold the name and the actual pointer:3

type proc_property_type

character(len=:), allocatable :: name

procedure(), pointer, nopass :: proc

end type proc_property_type

The subsequent use is (almost) the same as for data:

!

! "Cast" the subroutine name to a procedure pointer

! The subroutine "printing" takes two integer arguments

!

3It does not seem possible to use sourced allocation with a procedure pointer as source.

6

proc => printing

call prototype_set(p, "Print", proc)

!

! Retrieve the pointer and call the routine

!

proc => null()

call prototype_get(p, "Print", proc, found)

if (found) then

call proc(10, 11)

else

write(*,*) ’Unknown method - "Print"’

endif

One caveat though: there is no check whether the argument list to the actual
call is correct in terms of number and type of arguments.

While here we have used procedure pointers independent of an object, you
can also use this technique to control the actual implementation of object meth-
ods. After all, the components of an object can be procedure pointers too.

5 Conclusion

Using unlimited polymorphic variables and sourced allocation makes it possible
to implement an almost generic type of storage and retrieval mechanisms. The
module described here is merely an example of a much wider class of such
mechanisms.

6 Beyond a demonstration

This note illustrates how you could implement the prototypes pattern in Fortran.
The implementation is far from complete. To make it more useful:

• Add more basic types to the code.

• Implement support for procedure pointers.

The source code can be found at https://sourceforge.net/p/flibs/svncode/
HEAD/tree/trunk/experiments/prototypes.f90

7

https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/prototypes.f90
https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/prototypes.f90

	Introduction
	The interface and implementation
	Supporting new basic and derived types
	Storing functions and subroutines as properties
	Conclusion
	Beyond a demonstration

